< Back

Pancreatic Cancer Nursing CE Course

3.5 ANCC Contact Hours

About this course:

This module explores the epidemiology, pathophysiology, risk factors, clinical manifestations, diagnosis, and treatment modalities of pancreatic cancer to help clinicians provide optimal care, patient education, and support throughout the disease trajectory.

Course preview

Pancreatic Cancer

Disclosure Statement

This module explores the epidemiology, pathophysiology, risk factors, clinical manifestations, diagnosis, and treatment modalities of pancreatic cancer to help clinicians provide optimal care, patient education, and support throughout the disease trajectory.

By the completion of this module, learners will be able to:

  • discuss the epidemiology of pancreatic cancer in the US and risk factors for the development of the disease
  • examine the anatomy of the pancreas and the pathophysiology leading to the development of pancreatic cancer
  • discuss the signs and symptoms, diagnostic workup, pancreatic cancer subtypes, and components of pancreatic cancer staging
  • review the evidence-based guidelines for the management of pancreatic cancer, including treatment side effects, risks, and the elements of patient education

According to the American Cancer Society (ACS, 2023a), approximately 64,050 people (33,130 men and 30,920 women) in the US will be diagnosed with pancreatic cancer, and about 50,550 (26,620 men and 23,930 women) will die annually. Pancreatic cancer is one of the most challenging cancers to diagnose, as it shows little or no symptoms during the early stages, and there are no effective screening tests. It carries a very poor prognosis and is characterized by a high mortality rate, currently accounting for 3% of all cancers and 8.3% of all cancer deaths in the US. Given its grim prognosis, nurses must remain updated and informed on the clinical features of the disease, as well as its pertinent risk factors, to facilitate a timely diagnosis and reduce mortality (ACS, 2023a; Siegel et al., 2023).


The average lifetime risk for developing pancreatic cancer among the general population is approximately 1.6% (1 in 64) in the US. Based on data from the Surveillance, Epidemiology, and End Results Program (SEER, 2023), the median age at diagnosis is 70. It is most frequently diagnosed in individuals aged 65 to 74 (31.6%), followed by those aged 75 to 84 (24.7%). The condition is more common among men (15.1 per 100,000) than women (11.8 per 100,000). Incidence rates are highest for Black males (17.6 per 100,000), followed by non-Hispanic American Indian/Alaska Native males (16.5 per 100,000), non-Hispanic White males (15.7 per 100,000), Black females (14.9 per 100,000), and Hispanic males (12.7 per 100,000). Asian/Pacific Islanders have the lowest incidence rates among males (10.9 per 100,000) and females (9.2 per 100,000). Mortality rates are highest among Black males and females, respectively (15.3 per 100,000 and 12.3 per 100,000). Mortality rates are lowest among Asian/Pacific Islander males and females, respectively (8.2 per 100,000 and 7.0 per 100,000). The 5-year survival rate for pancreatic cancer is dismal and depends on the stage at diagnosis. Localized pancreatic cancer (i.e., cancer that has not spread outside of the pancreas) has a 5-year survival rate of 44%, which declines to only 15% for regional (i.e., cancer that has spread to nearby structures or lymph nodes) and 3% for those with distant metastases (i.e., cancer spreading to distant organs or sites outside the pancreas). Unfortunately, roughly 80% of pancreatic cancers are diagnosed at an advanced stage, accounting for the bleak survival rates. The median age at death is 72 years, with the highest percentage of deaths among those aged 65 to 74 (31.2%), followed by those aged 75 to 84 (27.5%; ACS, 2023a, 2023b; SEER, 2023).


Risk and Protective Factors

All individuals are at risk for pancreatic cancer, and the risk increases with age. Environmental, lifestyle choices, and genetic factors all serve important roles in the development of the condition. Although most pancreatic cancers are diagnosed without identifiable risk factors or family history, several influences can increase or decrease a person's risk for pancreatic cancer. Table 1 describes the major risk and preventative factors (ACS, 2020a).

Table 1

Pancreatic Cancer Risk and Protective Factors


Description of Evidence

Tobacco Use

An estimated 25% of pancreatic cancers are linked to smoking, as smokers are twice as likely to be diagnosed with the disease than those who have never smoked. The ACS (2020) cites tobacco as the most important modifiable risk factor for pancreatic cancer. Avoiding tobacco and smoking cessation can lower the risk of pancreatic cancer.



The risk of developing pancreatic cancer increases with age. Nearly 70% of all pancreatic cancers are diagnosed in individuals 65 and older.


As noted earlier, males are at a slightly higher risk for pancreatic cancer than females. Of the 64,050 people diagnosed with pancreatic cancer in 2020, males account for 51.7% (33,130), whereas females account for 48.3% (30,920).


Obesity (i.e., defined as a body mass index [BMI] of 30 or higher) is a risk factor for pancreatic cancer, as obese individuals are 20% more likely to develop the disease.


Pancreatitis is a condition characterized by pancreatic inflammation and is associated with an increased risk for pancreatic cancer. Chronic pancreatitis denotes long-term inflammation, is often seen in patients with heavy alcohol use, and carries a higher risk for pancreatic cancer. Excess alcohol use increases the risk of chronic pancreatitis, heightening the risk of pancreatic cancer. Avoiding alcohol or limiting intake to two drinks per day for males or one for females can lower the risk of pancreatitis.

Type 2 Diabetes Mellitus (T2DM)

The relative risk of pancreatic cancer in people with T2DM for at least five years is double that of persons without T2DM; however, the etiology of this relationship remains unclear. It is indeterminate if patients with type 1 diabetes mellitus (T1DM) are at increased risk.

Occupational Exposures

Specific workplace exposures, such as the chemicals used for dry cleaning or metalworking industries, may increase pancreatic cancer risk.


While data is not definitive, and additional studies are necessary, research suggests that processed foods, red meats, and excess sugar intake can increase pancreatic cancer risk. A healthy diet that includes adequate fruits, vegetables, and whole grains while limiting highly processed foods, sugars, and red meat is recommended as a preventative measure. Low serum levels of lycopene (a carotenoid found in fruits) and selenium have been found in patients who have pancreatic cancer, suggesting that fruit and selenium consumption are protective factors.

...purchase below to continue the course

gn="top" width="120">




Patients are at increased risk for pancreatic cancer if they have a first-degree relative (i.e., parent or sibling) with the disease. Approximately 3% to 10% of individuals with pancreatic cancer have a positive family history of the disease. In some families, the risk is due to a hereditary syndrome, whereas, in other families, the increased risk remains unknown. Familial pancreatic cancer is defined as having two or more first-degree relatives affected with pancreatic cancer (see next section).

(ACS, 2020a, 2023b; Dragovich, 2022b; Fernandez-del Castillo & Jimenez, 2023)


Other risk factors have been identified in the literature, but the evidence supporting a link to pancreatic cancer is uncertain. For example, some studies have found an increased risk of pancreatic cancer with increased coffee consumption, while others have shown no increased risk. Similarly, studies have shown conflicting data on the association of pancreatic cancer with aspirin (ASA; Ecotrin) or other non-steroidal anti-inflammatory drugs (NSAIDs), and Helicobacter pylori (H. pylori), hepatitis B (HBV), hepatitis C (HCV) infections (Fernandez-del Castillo & Jimenez, 2023; Puckett & Garfield, 2022).

Germline and Somatic Genes Mutations

Germline (inherited) and somatic (acquired) mutations in cancer-causing oncogenes and tumor suppressor genes are common in pancreatic cancer. Inherited (or hereditary) mutations are passed along familial lines directly from a parent to a child. These mutations are found in every body cell and increase the individual's predisposition to developing pancreatic cancer. Unlike inherited mutations, somatic changes are not hereditary or passed to subsequent generations. Instead, somatic mutations occur during one's lifetime due to environmental exposures, such as ultraviolet (UV) radiation from sun exposure, ionizing radiation, free radicals, carcinogens, or chemical exposures. Somatic mutations only occur in specific cells within the body. An oncogene is a mutation associated with cancer development; it can be inherited or somatic. In their normal and non-mutated state, oncogenes are called proto-oncogenes, regulating healthy cell growth and division. When a proto-oncogene mutates into an oncogene, it becomes permanently activated (turned on), fueling unregulated cell growth and resultant cancer cells (CancerQuest, n.d.; Dragovich, 2022b; Yarbro et al., 2018).

Rat sarcoma (RAS) is a family of genes that include Kirsten rat sarcoma (KRAS) and neuroblastoma rat sarcoma (NRAS) genes, which comprise the most frequently mutated oncogene family in cancer. KRAS is cited as the most commonly activated oncogene in pancreatic cancer, present in more than 95% of pancreatic adenocarcinomas. The KRAS protein becomes permanently activated in these cases, inducing continual cellular proliferation, invasion, and survival. Clinical research has demonstrated that KRAS mutation correlates with a poorer prognosis in patients with pancreatic cancer (Buscail et al., 2020; Waters & Der, 2018).

Tumor suppressor genes are healthy genes that slow cell division, repair deoxyribonucleic acid (DNA) errors, and induce apoptosis (programmed cell death). Under physiologic conditions, tumor suppressor genes regulate healthy cellular growth and division and prevent cells with mutated or damaged DNA from replicating, thereby avoiding tumor development. These processes continue unregulated when tumor suppressor genes are inactivated (turned off). Consequently, DNA damage accumulates in cells and continues to divide uncontrollably, leading to tumor growth (CancerQuest, n.d.; Dragovich, 2022b; Yarbro et al., 2018).

The most common tumor suppressor gene affected in pancreatic cancer is the p16 gene, which is inactivated in about 95% of cases. The p16 gene is also known as cyclin-dependent kinase inhibitor 2A (CDKN2A), and mutations in this gene occur in pancreatic cancer at a rate higher than nearly any other tumor type. P16 is one of the inhibitors for cyclin-dependent kinases, or CDK enzymes, which drive a cell's progression through the division cycle. Individuals with CDNK2A/p16 mutations have a 20% increased risk of developing pancreatic cancer by age 75. The second most common is the p53 gene, which is inactivated in approximately 70% of pancreatic cancers. Since p53 is critical in regulating DNA repair and cell division, it is nicknamed "guardian of the genome" (Dragovich, 2022b; MedlinePlus, 2018, 2020).

Inherited Risk

According to the American Society of Clinical Oncology (ASCO, 2022), roughly 10% of pancreatic cancers are associated with inherited mutations in specific genes, and some of the most common genetic syndromes predisposing individuals to pancreatic cancer are described in this section.

Hereditary Pancreatitis (HP)

HP is a rare genetic syndrome characterized by recurring episodes of severe epigastric pain and hyperamylasemia (elevated serum amylase), with the first episode typically occurring before age 10. The condition is most commonly associated with a mutation in the PRSS1 gene, inherited in an autosomal dominant (AD) pattern. As demonstrated in Figure 1, in an AD inheritance pattern, a copy of the mutated gene in each cell is sufficient to increase the risk of developing cancer. The altered gene can be inherited from either parent, and each child of a parent with the mutation has a 50% chance of inheriting the same gene mutation. HP carries a risk of pancreatic cancer about 50 times higher than the general population. An estimated 65% to 80% of people with HP have mutations in the PRSS1 gene. PRSS1 provides instructions for cationic trypsinogen, an enzyme that aids food digestion. Cationic trypsinogen is generated and released from the pancreas and then transported to the small intestine, where it is cleaved into its active form (trypsin). Once digestion is complete, the enzyme is broken down and removed from the body. Mutations in the PRSS1 gene lead to a buildup of trypsin in the pancreas, stimulating inflammatory effects that lead to HP. HP progresses to chronic pancreatitis, and the prolonged inflammation induces damage to the pancreas, driving tumorigenesis (Canto, 2023; MedlinePlus, 2012; Schwarzenberg, 2023).

Figure 1

Autosomal Dominant (top) vs. Autosomal Recessive (bottom) Disease Inheritance


Family Breast Cancer (BRCA1/2 gene mutations)

While mutations in BRCA1 and BRCA2 (BRCA1/2) genes are most commonly associated with an increased risk for breast and ovarian cancer, they are also among the most common inherited causes of pancreatic cancer. Females with BRCA1/2 mutations have an increased risk for breast, ovarian, melanoma, and pancreatic cancer, whereas males with BRCA1/2 mutations have an increased risk for breast, prostate, melanoma, and pancreatic cancer. Everyone is born with BRCA1 and BRCA2 genes. In their non-mutated state, BRCA1/2 genes function as essential tumor suppressor genes that promote the healthy growth, development, and division of specific cells in the body. Mutations in these genes disrupt their normal functions, increasing the propensity toward cancer development. Mutations in BRCA1/2 genes follow an AD inheritance pattern. Mutations in the BRCA1/2 genes are the most common hereditary cause of familial pancreatic cancer, linked to a 2- to 6-fold higher risk of pancreatic cancer, a younger age of onset, and a more aggressive clinical course. Of the two gene mutations, the link with BRCA2 is better established. It carries a higher risk for developing pancreatic cancer, found in 5% to 10% of cases, whereas BRCA1 is identified in about 1% to 2% of cases. Mutations in BRCA1/2 are about ten times more common in those of Ashkenazi Jewish descent than in the general US population. Among Ashkenazi Jewish individuals with pancreatic cancer, BRCA2 mutations are found in up to 13.7% of cases (Canto, 2023; Centers for Disease Control and Prevention [CDC], 2023b; Dragovich, 2022b; National Comprehensive Cancer Network [NCCN], 2023a, 2023b; Pilarski, 2019).

Peutz-Jeghers syndrome (PJS) 

Peutz-Jeghers syndrome (PJS) is a rare disorder that affects an estimated 1 in 50,000 to 1 in 200,000 people. It is caused by a mutation in the STK11 gene (also called LKB1), which provides instructions for generating an enzyme called serine/threonine kinase 11, which functions as a tumor suppressor, regulating cellular growth and division. PJS is inherited in an AD pattern but can also occur as a new (de novo) mutation in 25% to 45% of affected individuals. It typically presents during childhood and is characterized by benign growths (polyps) in the digestive tract called 'hamartomatous polyps.' While these are noncancerous polyps, they can cause bleeding and problems with the bowel, including intestinal obstruction. Classic signs of PJS in children and young adults include freckles and pigmented spots on the skin and in the mouth, called mucocutaneous hyperpigmentation. However, these typically fade during puberty, and the condition often goes undiagnosed. PJS increases the risk of developing several types of cancers, such as breast, colorectal (CRC), gastric, ovarian, testicular, lung, and many others. Without appropriate surveillance, these patients' lifetime risk of developing cancer ranges from 85% to 95%. Regarding pancreatic cancer, the lifetime risk for pancreatic cancer can range from 11% to 35% (ASCO, 2022; Canto, 2023; MedlinePlus, 2015; To, 2018).

Hereditary Nonpolyposis Colorectal Cancer (HNPCC) 

Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome (LS) is most commonly known for its high-risk association with CRC; however, it is also associated with an increased risk of various other types of cancers, including uterine (endometrial), ovarian, gastric, pancreatic, urothelial, glioblastoma, biliary tract, and small intestine. Individuals inherit LS in an AD pattern. In the US, it is estimated that 1 in 279 individuals (1.2 million people) have a gene mutation associated with LS; however, most are undiagnosed since identification depends on a cancer diagnosis. Changes in the protein expression of MLH1, MSH2, MSH6, or PMS2 genes are most commonly found in LS. Under physiologic conditions, these genes repair potential errors during DNA replication (the process during which DNA is copied in preparation for cell division); collectively, they are known as mismatch repair (MMR) genes. Since mutations in any of these genes impede the cell's ability to repair DNA replication errors, abnormal cells continue to divide. Over time, the accumulated DNA replication errors can lead to uncontrolled cell growth and an increased propensity for cancer development. Mutations in the MLH1 or MSH2 gene are associated with a higher risk (70% to 80%) of developing cancer than mutations in the MSH6 or PMS2 genes, which carry a lower risk (25% to 60%). While gene mutations predispose individuals to cancer, not all people with these mutations will develop cancerous tumors. The lifetime risk of pancreatic cancer in patients with LS varies from 1% to 6% (ASCO, 2021; Canto, 2023; MedlinePlus, 2021a). The accumulated risk of pancreatic cancer in LS patients is around 3.7%, an 8.6-fold increase compared with the general population (Bujanda & Herreros-Villanueva, 2017). Greater than 90% of LS-related cancers are mismatch repair deficient (dMMR) or microsatellite instability-high (MSI-H), meaning they lack expression of at least one of the MMR proteins. According to the NCCN guidelines (2023a), patients with MSI-H or dMMR should be referred to a genetic counselor for formalized genetic testing. LS can only be confirmed by a specialized gene panel blood test (CDC, 2023a; NCCN, 2023a).

Ataxia Tellangiectasia Mutation (ATM)

Advancements in technology have recently led to the discovery of new pancreatic cancer susceptibility genes, such as the ataxia telangiectasia mutated (ATM) gene. The ATM gene provides instructions for generating serine/threonine kinase, an integral component of DNA repair. The ATM gene also plays an essential role in controlling the rate at which cells grow and divide and is necessary for the health and development of the nervous and immune systems. Ataxia-telangiectasia is a risk factor for pancreatic cancer as it is an immunodeficiency disease caused by mutations in the ataxia-telangiectasia gene. Ataxia-telangiectasia is an autosomal recessive (AR) disease of childhood that causes the immune system to break down, heightening susceptibility to illness. In AR disease, one abnormal gene is inherited from each parent, as the patient requires two copies of the mutation to be affected by the disease. A carrier has one abnormal gene (recessive) and one normal gene (dominant) and is clinically unaffected by the disorder. As demonstrated in Figure 1, two carriers have a 25% chance of having an unaffected child with two normal genes, a 50% chance of having an unaffected carrier, and a 25% chance of having an affected child. AR disorders are not typically seen in every generation of an affected family. Ataxia-telangiectasia is rare, occurring in only 1 out of 40,000 to 100,000 people worldwide. The condition confers increased cancer risk, most notably pancreatic and breast cancers. An association between ATM gene mutations and pancreatic cancer is evident, although the exact risks are not yet defined; additional research is needed to clarify this relationship (Canto, 2023; MedlinePlus, 2021b; Pancreatic Cancer Action Network, 2022).

Familial Atypical Multiple Mole Melanoma (FAMMM) 

Familial atypical multiple mole melanoma (FAMMM) is a rare AD disorder most commonly caused by an inherited mutation in the p16/CDKN2A gene associated with skin and eye melanomas. FAMMM is characterized by numerous (usually more than 50) melanocytic nevi (moles) of different shapes and sizes and a family history of malignant melanoma. The family history typically includes one or more first or second-degree relatives with melanoma (Genetic and Rare Diseases, 2023). FAMMM increases the risk of pancreatic cancer 15 to 65 times relative to the general population, and the prognosis is very poor (Canto, 2023; NCCN, 2023a, 2023b; Pancreatic Cancer Action Network, 2022).

Familial Adenomatous Polyposis (FAP)

Familial adenomatous polyposis (FAP) is known for its early onset of multiple gastrointestinal (GI) adenomas. Individuals with FAP tend to develop numerous benign polyps in their colon as early as their 20s and 30s. The number of polyps increases to thousands with advancing age, and unless the colon is removed, these polyps will develop into CRC. The condition is most commonly linked to pathogenic mutations in the adenomatous polyposis coli (APC) gene, inherited in an AD pattern and affecting the cell's ability to maintain healthy growth and function. Aside from CRC risk, individuals with mutations in the APC gene are at a 5-fold increased likelihood of developing pancreatic cancer than the general population (ACS, 2020a; Canto, 2023; MedlinePlus, 2013).

PALB2 Gene Mutations

Mutations in the PALB2 gene may be inherited from either parent as it follows an AD inheritance pattern. PALB2 mutations are most notably associated with an increased risk for breast cancer but also carry an increased risk for pancreatic cancer; the exact risk is unknown. Mutations in the PALB2 gene have been identified in approximately 3% to 4% of familial pancreatic cancer cases (Canto, 2023; NCCN, 2023b).

Genetic Testing

The NCCN (2023b) endorses the following criteria regarding the role of germline (genetic) testing in patients with pancreatic cancer: germline testing is recommended for any patient with confirmed pancreatic cancer and those considering the molecular analysis of tumors for patients with metastatic disease using comprehensive gene panels for hereditary cancer syndromes. Referral to a genetic counselor is recommended for patients who test positive for a pathogenic mutation or patients with a positive family history of cancer, especially pancreatic cancer, regardless of mutation status (Dragovich, 2022d; NCCN, 2023b). Regarding somatic testing, the NCCN (2023b) endorses tumor/somatic profiling (testing on tumor tissue) for patients with locally advanced/metastatic disease candidates for anti-cancer therapy. Specifically, the guidelines recommend testing for, but not limited to, BRCA1/2, KRAS, PALB2, and MMR deficiency. DNA sequencing techniques can identify both germline and somatic mutations. Germline testing is required to determine if the mutation is inherited; these mutations can be identified by utilizing a saliva sample containing buccal cells or a peripheral blood sample. Genetic testing on the tumor specimen can identify genetic changes directly within the cancerous cells. This information helps identify treatment options likely to be the most effective (Dragovich, 2022d; Mahon, 2020; NCCN, 2023a).

Pancreatic Cancer Screening

Routine screening for pancreatic cancer is not recommended for the general population with average risk because the lifetime risk is low. However, many prospective studies have found that screening asymptomatic, high-risk individuals (those with a family history of at least two affected first-degree relatives) for pancreatic cancer was associated with earlier diagnosis, more curative surgical resections, and increased survival. While several studies demonstrate the clinical benefit of screening high-risk individuals, universal guidelines regarding the age to start screening, the most effective screening modality, and the testing frequency are inconsistent (Canto, 2023; Dragovich, 2022a; NCCN, 2023a). According to the NCCN (2023a) guidelines, individuals suspected of having familial pancreatic syndrome or a high-risk genetic mutation should be referred to a genetic counselor. Individuals with a strong family history or specific known high-risk mutations (e.g., p16/CDKN2A) may opt to undergo heightened surveillance. The most commonly performed pancreatic cancer screening modalities include computerized tomography (CT), magnetic resonance imaging (MRI)/ magnetic resonance cholangiopancreatography (MRCP), or endoscopic ultrasound (EUS). Test selection depends on patient risk factors, patient preference, and availability of the testing modalities. All screening tests have limitations and potential harms, including false-positive and false-negative results. There is a high incidence of pancreatic abnormalities detected on screening tests (e.g., pancreatic cysts), and there are no clear evidence-based guidelines for properly surveying these lesions. Positive (abnormal) or inconclusive results often subject patients to invasive procedures (e.g., biopsy), which are not without risks, such as bleeding and infection. Additionally, medical imaging is subject to error, and screening tests are often imperfect and costly. The NCCN (2023a, 2023b) and the International Cancer of the Pancreas Screening (CAPS) Consortium collectively endorse that the decision to undergo screening in high-risk patients should be individual. Clinicians are encouraged to discuss the pros and cons of screening, including an in-depth discussion about the potential limitations of screening and the lack of data regarding screening benefits. These discussions allow patients to ask questions and decide if screening is right for them. For individuals who opt to undergo screening, imaging should be performed in experienced, high-volume academic medical centers (Goggins et al., 2020; NCCN, 2023a, 2023b).

The CAPS Consortium has provided some guidance on pancreatic screening for high-risk individuals. They recommend screening the following high-risk groups:

  • patient with Peutz-Jeghers syndrome
  • all carriers of the CDKN2A germline mutation
  • carriers of BRCA1/BRACA2, ATM, PALB2, MLH1, MSH2, and MSH6 germline mutations with at least one first-degree relative with pancreatic cancer
  • individuals with a familial pancreatic cancer kindred (i.e., one first-degree relative with pancreatic cancer who also has a first-degree relative with pancreatic cancer; Dragovich, 2022a; Goggins et al., 2020)

The CAPS Consortium also provides some recommendations on the timing of surveillance based on family history and gene mutation. Surveillance should start at 40 for individuals with Peutz-Jegher syndrome or CDKN2A mutation. For individuals with familial pancreatic cancer kindred, surveillance should begin at 50 to 55 or 10 years younger than the youngest affected relative. Surveillance starting at 45 to 50 or 10 years younger than the youngest affected relative is recommended for BRCA1, BRCA2, ATM, PALB2, MLH1, and MSH2. Screening should occur every twelve months for patients with no abnormalities and every 3 to 6 months for those with suspicious abnormalities (Dragovich, 2022a; Goggins et al., 2020).


The pancreas is an organ of the digestive system that measures approximately 20 cm long and is positioned in the back of the abdomen, directly behind the stomach. As displayed in Figure 2, the pancreas is divided into three sections: the head, body, and tail. The head is the widest portion of the pancreas, located on the abdomen's far-right side in the duodenal curve (the beginning of the small intestine). The body is the central portion of the pancreas and is situated behind the duodenum. The tail is the narrow left side of the pancreas that extends slightly upward and ends near the spleen (McCance & Heuther, 2019; Yarbro et al., 2018).

Figure 2

Pancreas Anatomy

The pancreatic duct joins the biliary duct (from the liver) and extends the length of the pancreas. Blood is supplied to the pancreas by branches of the celiac and superior mesenteric arteries. The pancreas head drains venous blood through the portal vein, and the body and tail drain via the portal vein. The pancreas is unique in that it has both digestive (exocrine) and hormonal (endocrine) functions, serving essential metabolic roles as part of the digestive and endocrine systems (Lumen Learning, n.d.; McCance & Heuther, 2019).

Exocrine Pancreas

Most of the pancreas comprises exocrine cells, which contain two major types of epithelium (acinar and ductal), which cluster to form exocrine glands. Exocrine glands secrete enzymes into a network of ducts that release alkaline (bicarbonate-rich) fluids and other pancreatic enzymes to facilitate digestion. The acinar cells secrete the enzymes, and the ductal cells secrete the bicarbonate fluid. The acinar cells are organized into spherical lobule-like structures surrounding secretory ducts. The secretions are called proenzymes at this point since they remain inactivated. They drain into a duct system that leads to the pancreatic duct before emptying into the common bile duct and being transported to the duodenum. Once the proenzymes enter the duodenum, they become activated by enterokinase, an enzyme secreted by the duodenal mucosa. Once activated, the pancreatic enzymes help break down carbohydrates, fats, proteins, and acids. Secretin is a substance that stimulates the acinar cells to release a bicarbonate-rich fluid to neutralize the stomach acids (chyme), which pass from the stomach into the duodenum. The pancreatic enzyme amylase digests carbohydrates, and lipase digests triglycerides, cholesterol, and lipids. Amylase and lipase are used as markers of pancreatic inflammation (e.g., pancreatitis). Amylase may be measured in the urine or blood, whereas lipase is only measured in the blood (McCance & Heuther, 2019; Yarbro et al., 2018). A normal serum amylase level is 25–125 U/L, and a normal serum lipase level is 10–140 U/L (American Board of Internal Medicine [ABIM], 2023).

Endocrine Pancreas

The endocrine glands account for a much smaller percentage of the pancreas. The endocrine gland primarily consists of the islets of Langerhans, which produce and secrete hormones (glucagon and insulin) into the bloodstream. These hormones regulate a significant portion of the carbohydrate metabolism within the body by facilitating the formation and cellular uptake of glucose (Lumen Learning, n.d.; McCance & Heuther, 2019). The three types of hormone-secreting cells that comprise the islets of Langerhans include the following:

  • alpha (α)-cells (secrete glucagon and comprise 15% to 20% of islet cells)
  • beta (ß)-cells (secrete insulin and comprise 65% to 80% of islet cells)
  • delta (D)-cells (secrete somatostatin and gastrin and comprise 3% to 10% of islet cells; Lumen Learning, n.d.; McCance & Heuther, 2019)

A major disorder of the endocrine pancreas is DM, a chronic disease impacting multiple body systems due to abnormal insulin production, impaired insulin utilization, or both. T1DM is characterized by the autoimmune destruction of the pancreatic ß-cells, leading to the total absence of insulin production. A genetic predisposition is typically compounded by exposure to a virus that contributes to this autoimmune condition. Autoantibodies to the islet cells cause a decrease in normal function before other symptoms of T1DM appear. Patients with T1DM depend on external insulin for survival since the hormone is not produced internally. In T2DM, insulin is either generated in insufficient quantities, used poorly by the tissues, or both. The most common risk factor for T2DM is obesity, especially abdominal adiposity. Those with TD2M are insulin-resistant and are managed with oral hypoglycemics (e.g., metformin [Glucophage]). If control of hyperglycemia is not achieved, patients with TD2M may eventually require external insulin (Hinkle et al., 2021; Lumen Learning, n.d.).

Normal insulin metabolism occurs through the continuous insulin release by the ß-cells in the islets of Langerhans of the pancreas. Insulin synthesis begins with its precursor, proinsulin. Enzymes break down proinsulin to produce insulin and C-peptide in equal amounts. This byproduct, C-peptide, is useful when assessing pancreatic ß-cell function as it can be measured in the urine and blood. The average amount of insulin secreted daily by a healthy adult is 40-50 units or 0.6 units/kg of body weight. Insulin acts as an anabolic or storage hormone in the body. The insulin secreted with food intake promotes glucose transport into the cells for energy by unlocking receptor sites in the skeletal muscle and adipose tissue. Skeletal muscles and fatty tissue are considered insulin-dependent; the brain, liver, and blood cells do not depend on insulin and only require an adequate glucose supply for normal functioning. While liver cells (hepatocytes) are not insulin-dependent, they have insulin receptor sites facilitating hepatic glucose uptake and its conversion to glycogen (Hinkle et al., 2021; Lumen Learning, n.d.).

As blood glucose (BG) increases after a meal or food intake, glucose is stored as glycogen in the liver and muscle tissue. Concurrently, insulin secretion inhibits gluconeogenesis (glucose production from non-sugar substances), enhances fatty tissue deposition, and increases protein synthesis. The reduced insulin that occurs overnight (or from fasting) causes the liver to release glucose, the muscles to release proteins, and the fatty tissue to release fat. Counter-regulatory hormones such as glucagon, epinephrine, growth hormone, and cortisol oppose the effects of insulin. They increase BG by stimulating the production of glucose and liver output and decreasing glucose movement into the cells. Insulin secretion is designed to maintain a stable BG level of 70-120 mg/dL. A healthy BG level is typically maintained by regulating the release of glucose for energy during fasting, food intake, and the production and release of insulin and the counter-regulatory hormones (Hinkle et al., 2021; Lumen Learning, n.d.). Less is understood about the function of pancreatic somatostatin and gastrin. Somatostatin is an essential hormone in carbohydrate, fat, and protein metabolism. It suppresses the release of other hormones generated in the pancreas and functions to maintain the homeostasis of nutrients. Gastrin helps to control the secretion of glucagon. All hormonal pancreatic secretions pass through the portal vein into the liver (McCance & Heuther, 2019).

For a detailed account of diabetes, refer to the Diabetes NursingCE courses on our site.

Pancreatic Cancer Subtypes

Pancreatic tumors develop in the endocrine and exocrine glands and are grouped accordingly (Suriawinata, 2023).

Exocrine Tumors

             Exocrine tumors account for at least 90% of all pancreatic cancer diagnoses, with ductal adenocarcinoma comprising the vast majority. Exocrine tumors are outlined in Table 2 (Yarbro et al., 2018).


Table 2 

Exocrine Tumors 



Ductal adenocarcinoma

  • accounts for 80% to 90% of diagnoses
  • typically forms in the epithelial (glandular) cells that line the pancreatic ducts


  • a rare variant of ductal adenocarcinoma
  • includes both glandular (adeno) and squamous differentiation
  • carries an especially poor prognosis

Acinar cell carcinoma

  • very rare; comprises a very small percentage of tumors
  • patients typically present with biliary or GI obstruction
  • may cause the pancreas to generate excess lipase enzymes
  • slightly better prognosis than ductal adenocarcinoma

Giant cell carcinoma

  • accounts for 5% of exocrine tumors
  • may arise in any part of the pancreas
  • usually less aggressive, with a slower rate of metastases and lymph node involvement
  • carries a better prognosis than ductal adenocarcinoma

(NCCN, 2023b; Suriawinata, 2023; Yarbro et al., 2018)


Precursor Lesions to Ductal Adenocarcinoma

There are three well-cited noninvasive precursor lesions to ductal adenocarcinoma: pancreatic intraepithelial neoplasia (PanIN), mucinous cystic neoplasm (MCN), and intraductal papillary mucinous neoplasms (IPMN). These tumors are usually small, cystic, and discovered incidentally. They are often benign when diagnosed but have a chance of becoming cancerous. The incidence increases with age but most commonly occurs in those aged 60 to 70. Many are managed conservatively with heightened surveillance (e.g., annual radiographic monitoring) and never progress to invasive cancer. Tumors with certain high-risk features, such as IPMNs arising from the main pancreatic duct, require surgical resection and monitoring for recurrence (NCCN, 2023b; Suriawinata, 2023).


Endocrine Tumors

Endocrine tumors are rare; they account for less than 5% of all pancreatic tumors, with only 1,000 new cases in the US annually. These islet cell tumors (or pancreatic neuroendocrine tumors [PNETs]) denote cancer of the hormone-producing cells. PNETs may be functioning (meaning they generate hormones) or nonfunctioning (do not generate hormones). Most PNETs are functional (75%) and typically present with symptoms of hormone hypersecretion. PNETs are characteristically small, well-circumscribed tumors that are difficult to distinguish from healthy islet cells. They are not always malignant and may or may not produce symptoms. The presence of metastases is the most reliable criterion for establishing a malignant process. Table 3 outlines the three most common functional PNETs (National Cancer Institute [NCI], 2022; Strosberg, 2023; Yarbro et al., 2018).

Table 3

Functional PNETs




  • a tumor that forms in the cells that make gastrin
  • also called Zollinger-Ellison syndrome
  • causes increased gastric acid production, which can lead to the following symptoms:
    • recurrent or chronic stomach ulcers
    • abdominal pain that may radiate to the back
    • gastroesophageal reflux
    • diarrhea
  • typically forms in the pancreatic head
  • most are malignant


  • forms in the cells that make insulin
  • characterized by excess insulin production, which can induce hypoglycemia (blurred vision, headache, lightheadedness, fatigue, weakness, nervousness, hunger, shakiness, irritability, diaphoresis, confusion)
  • usually slow-growing and rarely spread
  • can form anywhere in the pancreas
  • most are benign


  • forms in the cells that make glucagon
  • increases the level of glucose in the blood, which can induce hyperglycemia (headache, polyuria, polydipsia, polyphagia, excessive thirst, weakness, dry skin and mouth)
  • excess glucagon can also cause blood clots, diarrhea, weight loss, and sores at the corners of the mouth
  • usually forms in the tail of the pancreas
  • most are malignant

(NCI, 2022; Strosberg, 2023; Yarbro et al., 2018)


Clinical Manifestations

The signs and symptoms of pancreatic cancer typically occur late in the illness, are vague, nonspecific, and often mimic other conditions. Patients can experience bloating, anorexia, fatigue, mid-epigastric or back pain, and weight loss. It is typical for the individual with pancreatic cancer to ignore initial symptoms for several months until jaundice (yellowing of the skin and eyes caused by a buildup of bilirubin) or other prominent signs are present. Ominous signs usually develop late and only after invasion or obstruction of nearby tissue. Pancreatic cancer can also cause diabetes in 25% to 50% of patients, leading to glucose intolerance (i.e., polydipsia and polyuria). Further, manifestations of the disease can also differ based on the tumor's anatomical location (ACS, 2019; Fernandez del Castillo, 2023; Nguyen, 2022; Yarbro et al., 2018).

Head of the Pancreas

When the tumor involves the pancreatic head, symptoms typically appear earlier than those involving the body or tail. Pancreatic head tumors tend to occlude the distal common bile duct, causing duct obstruction and inducing a constellation of symptoms, including jaundice, weight loss, and pain. Jaundice with pain is much more common than painless jaundice and is the most common presenting symptom, prompting patients with pancreatic head tumors to seek medical care. Interestingly, patients with pancreatic head tumors have a high incidence of depression and anxiety, which has been shown to predate the diagnosis by as many as 3.5 years. This psychological phenomenon was first identified in 1931. While the relationship is poorly understood, research has demonstrated a 2 to 3 times higher incidence of depression in patients with pancreatic cancer than other intra-abdominal cancers. The proposed rationale is that hormonal neuroendocrine substances circulate through the central nervous system. Other symptoms of pancreatic head tumors include diarrhea, indigestion, weakness, and anorexia (ACS, 2019; Fernandez del Castillo, 2023; Yarbro et al., 2018; Yaskin, 1931).

Body of the Pancreas

Tumors in the pancreatic body produce signs and symptoms late in the illness, making it nearly impossible to detect early. The predominant presenting symptom of pancreatic body tumors is severe epigastric pain, intensifying about 3 to 4 hours after meals. The tumor compresses or displaces the stomach, inducing intense pain when the stomach is full; this pain is often accompanied by vomiting. The pain may be relieved by sitting up, leaning forward, or lying in the fetal position to alleviate the pressure on the stomach. In many cases, the tumor is palpable on abdominal examination and may be accompanied by splenomegaly (enlarged spleen) caused by tumor compression of the splenic vein. Tumors in the pancreatic body and tail do not induce jaundice but cause more pain and weight loss than those in the pancreatic head (ACS, 2019; Fernandez del Castillo, 2023; Yarbro et al., 2018).

Tail of the Pancreas

              In addition to the characteristics described above, tumors in the pancreatic tail are known for their silent growth and insidious progression, typically diagnosed in advanced stages. The most common symptoms include left upper quadrant pain, generalized weakness, anorexia, and indigestion. In addition to splenomegaly, signs of portal hypertension and ascites may be present from thrombosis of the portal system or liver damage. Upper GI bleeding (GIB) may also present with advanced pancreatic tail tumors. Weight loss is often accompanied by cachexia and muscle wasting (ACS, 2019; Fernandez del Castillo, 2023; Yarbro et al., 2018). Ominous physical examination findings suggesting metastatic pancreatic cancer include the following:

  • left supraclavicular adenopathy (Virchow node)
  • periumbilical adenopathy (Sister Mary Joseph nodes)
  • deep metastases in the pelvis encircling the perirectal region (Blumer's shelf; ACS, 2019; Fernandez del Castillo, 2023; Yarbro et al., 2018)


As noted earlier, PNETs do not always cause symptoms. Functional PNETs secrete excess hormones, which can induce various unusual manifestations and diverse signs and symptoms (see Table 3; NCI, 2022; Strosberg, 2023).

Diagnostic Workup

Pancreatic cancer remains one of the most challenging cancers to diagnose based on its anatomical location and subtle onset. When pancreatic cancer is suspected, an abdominal ultrasound (US) is the most common initial diagnostic test, especially for tumors in the pancreatic head. US is a safe, noninvasive imaging modality that uses sound waves to generate images of internal body structures. Also called sonography, US does not use X-rays or ionizing radiation. Images are obtained by placing a small probe (transducer) and ultrasound gel on the skin. The transducer produces sound waves at very high frequencies, which exceed the threshold of human hearing. The sound waves capture images of the internal organs and blood flow through vessels. Some transducers are placed directly inside the body to optimize image quality, such as through the GI tract or vagina. Abnormalities detected on US typically require follow-up imaging with a CT scan of the abdomen, which is superior in evaluating the abdominal structures, identifying suspicious features of the mass, and detecting intestinal obstruction, liver metastases, and nearby lymphadenopathy (enlarged lymph nodes). While several studies are available to assist with diagnosing pancreatic cancer, the only way to confirm the diagnosis and establish the specific clinical features of the tumor is through a biopsy specimen. Most pancreatic biopsies are obtained using nonsurgical procedures; the two most common techniques include EUS and endoscopic retrograde cholangiopancreatography (ERCP; NCCN, 2023b; RadiologyInfo.org, 2022a, 2022b).


Endoscopic Ultrasound

EUS is a specialized imaging technique that generates detailed, high-resolution, three-dimensional images of the pancreas and surrounding structures. It also facilitates the tissue sampling of the suspicious mass. EUS is performed to confirm the primary site of pancreatic cancer involvement and to obtain a tissue biopsy. The patient requires conscious sedation for this procedure. An endoscope (a thin, tube-like instrument with a light on the end) is guided down the esophagus and through the stomach until it reaches the duodenum. At the end of the tube, an US device emits sound waves to generate images of the pancreas, blood vessels, bile ducts, and nearby tissues. A needle biopsy (fine-needle aspiration [FNA] or core needle biopsy) is taken from the tumor site during the procedure. Studies have demonstrated that EUS-FNA is highly accurate in establishing a diagnosis of pancreatic cancer with an accuracy of 85% to 92%, a sensitivity of 80% to 95%, and a specificity of 92% to 100%. EUS is an outpatient procedure performed in a hospital or same-day surgery center using anesthesia. While complications from an EUS are rare, some of the most commonly cited complications include infection, pancreatitis, GIB, tearing, and adverse reactions from anesthesia (Dragovich, 2022d; Fernandez del Castillo, 2023; RadiologyInfo.org, 2022a, 2022b; Yousaf et al., 2020).


Endoscopic Retrograde Cholangiopancreatography

There are only a few differences between an EUS and an ERCP. A key difference is that the ERCP typically uses X-ray imaging and contrast, whereas an EUS does not. Most sources cite that an ERCP produces higher-quality images than a standard EUS and allows for enhanced visualization of the organs and ducts. Figure 3 demonstrates that an endoscope is inserted through the esophagus into the duodenum during an ERCP. Air is inserted through the endoscope into the duodenum to make it easier to see the organs, and a catheter is inserted into the endoscope until it reaches the bile and pancreatic ducts. Next, contrast material is injected, and X-rays are taken to evaluate for gallstones, strictures, or blockages. Similar to an EUS, an FNA or core-needle biopsy can be taken. However, an ERCP additionally allows for more advanced therapeutics, such as sphincterotomy or stenting procedures, to manage identified problems. A sphincterotomy involves making a small incision to enlarge the bile duct or the opening of the pancreatic duct to improve drainage or alleviate any blockage. Stenting involves placing a small plastic tube within a blocked or narrowed duct to improve drainage. Some stents are designed to pass through the intestine after a few weeks, whereas others must be removed or changed every 3 to 4 months. Permanent stents are typically made of metal. ERCP is the gold standard for alleviating biliary drainage in patients with biliary obstruction of the distal common bile duct, a common complication of pancreatic cancer. The most common ERCP complications include pancreatitis and cholangitis (inflammation of the bile duct system; Dragovich, 2022d; Pancreatic Cancer Action Network, n.d.; RadiologyInfo.org, 2022b).

Figure 3


Once pancreatic cancer is diagnosed, the NCCN (2023b) guidelines endorse the essential pancreatic cancer staging components outlined in Table 4.

Table 4

Components of Diagnostic Staging Workup

Complete history and physical

Laboratory tests:

  • complete blood count (CBC)
  • comprehensive metabolic panel (CMP), including liver function tests (LFTs)
  • direct and total bilirubin levels, amylase, and lipase
  • carbohydrate antigen 19-9 (CA 19-9) tumor marker (see next section)

Dedicated imaging studies of the pancreas are as follows:

  • CT of the abdomen (pancreatic protocol) with contrast (preferred) or MRI of the abdomen with contrast

Imaging to evaluate for other sites of disease as follows:

  • CT of the chest without contrast
  • the universal role of positron emission tomography (PET/CT) is unclear but should be considered in high-risk patients
    • PET/CT should not be used as a substitute for high-quality, contrast-enhanced CT imaging of the pancreas; it is only recommended following a pancreatic CT scan to detect signs of metastasis

 (Dragovich,2022d; Fernandez del Castillo, 2023; NCCN, 2023b)


Carbohydrate Antigen 19-9 (CA 19-9)

             Tumor markers are substances, or proteins, secreted by cancer or by the body's response to cancer's presence. Healthy cells also generate tumor markers in smaller quantities so that healthy people can have small amounts of tumor markers in their blood. While tumor markers are nonspecific and not beneficial when used in isolation, they can help evaluate treatment response and cancer recurrence. Although no tumor marker is sufficiently sensitive or specific to be considered 100% reliable and accurate for screening pancreatic cancer, CA 19-9 is the most specific tumor marker. CA 19-9 is a sialylated oligosaccharide found on circulating mucins in cancer patients. It is normally present in biliary tract cells. Elevated CA 19-9 levels can also occur in nonmalignant conditions such as gallstones, liver disease, cirrhosis, pancreatitis, obstruction, cholangitis, or cystic fibrosis (Dragovich, 2022d; Fernandez del Castillo, 2023; Yarbro et al., 2018). A normal CA 19-9 level is 0–37 U/mL (ABIM, 2023). The NCCN (2023b) guidelines recommend evaluating CA 19-9 as a baseline marker during the diagnostic workup and to assess treatment response. A decline in the CA 19-9 level following systemic therapy typically denotes a therapeutic response to treatment. Although CA 19-9 is an established prognostic marker for pancreatic cancer, it remains unclear how CA 19-9 monitoring should guide multimodal treatment or what degree of decline constitutes a meaningful treatment response (Tsai et al., 2020).

Pancreatic Cancer Staging

The cancer stage at diagnosis guides treatment options and strongly influences overall survival. The universal pancreatic cancer staging system is the American Joint Committee on Cancer's (AJCC) Tumor, Node, Metastasis (TNM) System. As cited within the NCCN (2023b) guidelines, the AJCC describes specific characteristics to assign stages I through IV, as outlined in Table 5 and demonstrated in Figure 4. Cancer staging reflects the cell type, tumor grade, anatomical location of the tumor, and extent of malignancy. Within the TNM staging system, T denotes the size of the tumor and if it has grown into nearby tissue, N refers to the presence of cancer in the lymph nodes, and M indicates if cancer has metastasized to other parts of the body beyond the origin site. The most common patterns of initial spread for pancreatic cancers include the liver, peritoneum, regional lymph nodes, and Virchow nodes (Amin et al., 2017; NCCN, 2023b; Yarbro et al., 2018).

Table 5

Pancreatic Cancer Staging 






primary tumor cannot be assessed



no evidence of primary tumor



carcinoma in situ



tumor ≤ 2 cm in greatest dimension



tumor > 2 cm and ≤ 4 cm in greatest dimension but has not grown outside of the pancreas



tumor > 4 cm in greatest dimension


tumor involves the celiac axis, superior mesenteric artery, and/or common hepatic artery, regardless of size


Any T

the tumor has spread (metastasized) to distant sites or organs outside the pancreas (e.g., the liver)

(Amin et al., 2017; NCCN, 2023b)

Figure 4

Pancreatic Cancer Staging 




Tumor Grade

Tumor grade measures how different the cancer cells look compared to healthy cells under the microscope. It is based on cell differentiation and varies from low grade (grade 1) to high grade (grade 3). Grade 1 is well-differentiated and appears similar to healthy cells, whereas grade 3 is poorly differentiated (i.e., does not resemble healthy cells) and most aggressive (NCCN, 2023b; Yarbro et al., 2018).


Treatment Modalities

Pancreatic cancer is difficult to treat due to its biological nature and advanced stage at diagnosis. Treatment for pancreatic cancer is usually multifactorial, involving combined modalities, and primarily depends on the cancer stage (Yarbro et al., 2018). The NCCN (2023b) provides evidence-based treatment guidelines for pancreatic cancer according to histopathological findings, genetics, staging, and other specific features. The guidelines are widely utilized in cancer care and guide medical decision-making throughout the patient's disease trajectory. Due to the aggressive biology of pancreatic cancer and the advanced stage of diagnosis for most patients, treatment is chronic, and most patients experience periods of remission and relapse. All patients need close monitoring and surveillance after treatment to monitor for recurrence, and many receive maintenance therapy. This section will review the most common treatment strategies (NCCN, 2023b).



Surgery is the primary mode of treatment for resectable pancreatic cancer. The role of surgery in pancreatic cancer is limited to tumors confined to the pancreas without any evidence of spread to distant lymph nodes or other organs. The surgical technique varies based on the tumor's location and relationship to surrounding blood vessels. The surgical goals are to optimize the quality of life, completely excise the tumor, obtain long-term cancer control, and reduce morbidity. Surgical resection offers the only chance of cure for exocrine pancreatic cancer; however, only 15% to 20% are resectable, often due to vascular invasion. Even with complete resection, high recurrence rates are likely and lead to poor prognosis. Chemotherapy, radiation, or combined options are often used to help improve outcomes. The risks and side effects of surgery depend on the size and degree of cancer invasion, the extent of surgery, and the structures removed. All surgeries and invasive procedures are accompanied by risks, such as adverse reactions to anesthesia, bleeding, blood clots, fistula formation (an abnormal connection between two hollow spaces within the body), bowel and bladder injury, infection, and life-threatening sepsis (Dragovich, 2022c; Mamon, 2023b; NCCN, 2023b; Yarbro et al., 2018).


Pancreatoduodenectomy (Whipple Procedure)

A Whipple procedure is one of the most common surgeries to manage pancreatic tumors confined to the pancreatic head. However, this type of surgery is also indicated for pancreatic ductal tumors, cholangiocarcinoma (bile duct cancer), and duodenal masses. It is a complex surgery in which the head of the pancreas, gallbladder, duodenum, a portion of the stomach, and surrounding lymph nodes are removed, and the remaining part of the pancreas and digestive organs are reconnected. Alternatively, some patients may undergo a pylorus-preserving Whipple, a modified version of the procedure in which the entire stomach and the stomach valve (pylorus) are kept in place. Patients usually require hospitalization for at least a week following a Whipple to allow for close monitoring as the body adapts to the significant changes. The mortality rate associated with a Whipple procedure is 6.6%. The most common postoperative complication is delayed gastric emptying (gastroparesis), a motility disorder in which the stomach does not empty food as quickly as possible. Gastroparesis induces nausea, vomiting, bloating, abdominal cramping, and anorexia, and symptoms typically improve within 7 to 10 days. If gastroparesis continues, patients may require nutrition support through a feeding tube or total parenteral nutrition (TPN) intravenously. The most serious complication is an abdominal infection caused by a pancreatic leak (leakage in the area that the pancreas connects to the intestine) or fistula. These complications occur in about 10% of cases and require timely antibiotic administration to minimize morbidity and mortality. Long-term GI effects are common; many experience ongoing diarrhea, flatus, and stomach cramping, requiring dietary adjustments. Most patients require the long-term and potentially permanent use of exogenous pancreatic enzymes to facilitate proper digestion after a Whipple (Fernandez-del Castillo, 2022; Dragovich, 2022c; Mirrielees et al., 2020).


Distal Pancreatectomy with En-bloc Splenectomy

In rare cases, pancreatic body or tail tumors are detected early enough to be considered curable, usually as an incidental finding in patients undergoing workup for an unrelated issue. In these patients, distal pancreatectomy with splenectomy has historically been the most common procedure in which the pancreas and spleen are removed. The spleen serves vital immunologic and hematologic functions, such as filtering the blood of debris. Excising the spleen increases the risk of infection, hypercoagulability, diabetes, and other hematological complications. Therefore, in recent years, many surgeons have advocated for spleen-preserving distal pancreatectomy, which carries a lower incidence of postoperative complications. A distal pancreatectomy is associated with a 3.5% mortality rate and carries the risk of pancreatic stump leak, hemorrhage, and endocrine insufficiency (Dragovich, 2022c; NCCN, 2023b; Sun et al., 2017; Yarbro et al., 2018).


Radiation Therapy

Radiation therapy is a localized treatment that delivers a precisely measured amount of high-energy, highly focused rays of ionizing radiation to the tumor while providing as little injury as possible to surrounding tissue. Radiation causes cellular damage to cancer cells, leading to biological changes in the DNA, rendering cells incapable of reproducing or spreading. All healthy and cancer cells are vulnerable to the effects of radiation and may be injured or destroyed; however, healthy cells can repair themselves and remain functional. The total radiation dose is hyper-fractionated, which means it is delivered to the tumor in small, divided doses or fractions rather than all at once. Hyper-fractionation allows healthy cells a chance to recover between treatments. The total number of fractions (doses) administered depends on the tumor size, location, reason for treatment, patient's overall health, performance status, goals of therapy, as well as consideration of any other concurrent therapies the patient is receiving (ACS, 2020b; Nettina, 2019).


External Radiation

External beam radiation therapy (EBRT) delivers radiation from a source outside the body and is the most common type of radiation therapy used for pancreatic cancer. Traditionally, radiation beams could only match the tumor's height and width, exposing more healthy tissue to the consequences of radiation. Over recent decades, 3-D conformational radiation therapy (3D-CRT) has become the mainstay of EBRT for many solid tumors, including pancreatic cancer. 3D-CRT is credited with the ability to reshape the radiation beam to match the tumor's shape. Further advancements in imaging technology have led to more precise treatment mechanisms that allow even more radiation to reach the tumor. Intensity-modulated radiation therapy (IMRT) is a newer, highly conformal form of radiation that further reduces unintended exposure to healthy tissues. While 3D-CRT and IMRT are very similar in that they both target the tumor while sparing healthy tissue, IMRT allows modulation of the radiation beam's intensity, delivering a higher radiation dose to a precise location. The enhanced targeting technology of IMRT allows higher radiation doses to reach the disease site, enhancing clinical outcomes and limiting side effects. Stereotactic body radiation therapy (SBRT) is a technique in which extremely high biological doses of radiation are administered over a few short treatments. The target area is affected to a higher degree over a shorter period with minimal impact on healthy tissue. In pancreatic cancer treatment, the role of SBRT continues to evolve as it has been shown to improve cancer-related pain and quality of life. It is attractive because it can be completed quickly, requiring less time away from chemotherapy. SBRT has a relatively favorable toxicity profile with minimal systemic effects and, therefore, is potentially beneficial for patients who are not candidates for systemic therapy, such as older adults, those with poor performance status, or multiple complex medical comorbidities (ACS, 2020b; Burkon et al., 2022; Mamon, 2023a; NCCN, 2023b).


Radiation Side Effects 

              Radiation side effects depend on the specific area(s) of the body exposed and the dose received. Superficial skin irritation at the site where the EBRT beams aim is common and can include redness, blistering, and sunburn. GI symptoms are common due to the tumor's anatomical location and the impact of the radiation beams on surrounding tissues and structures. Common symptoms of GI toxicity may include nausea, vomiting, diarrhea, anorexia, bowel incontinence, abdominal pain, bloating, gastroparesis, heartburn, and esophagitis. Systemic effects may include fatigue, weakness, dehydration, scarring, fibrosis, and adhesion formation (the tissues impacted by radiation stick together; ACS, 2020c).


Systemic Therapy

According to the NCCN (2023b), systemic therapy is used in all stages of pancreatic cancer. Systemic therapy includes intravenous (IV) and oral chemotherapy, targeted therapy, and immunotherapy.



Chemotherapy, also called cytotoxic or antineoplastic therapy, encompasses a group of high-risk, hazardous drugs intending to destroy as many cancer cells with as minimal effect on healthy cells as possible. Chemotherapy generally works by interfering with the normal cell cycle, impairing DNA synthesis and cell replication, and preventing cancer cells from dividing, multiplying, and forming new cancer cells. Surgery for pancreatic cancer may or may not be preceded by neoadjuvant chemotherapy or followed by adjuvant therapy. Neoadjuvant chemotherapy is administered to shrink the tumor so that surgical intervention may not need to be as extensive. In pancreatic cancer, neoadjuvant chemotherapy may shrink the tumor enough so that the surgeon can perform a Whipple or other surgical resection of the tumor. Adjuvant therapy is given following surgery and aims to eradicate any micro-metastases and prevent cancer recurrence. Micro-metastases are a small collection of cancer cells too tiny to be identified on imaging scans that have detached from the original tumor and spread to other parts of the body. The danger with micro-metastases is that they can coalesce and form additional cancerous tumors within the body. Chemoradiation (concurrent chemotherapy and radiation therapy) is another common treatment typically administered after systemic chemotherapy. Chemotherapy acts as a radiosensitizer, thereby rendering cancer cells more vulnerable to the toxic effects of radiation. Palliative chemotherapy aims to relieve or delay cancer symptoms, enhance comfort, reduce symptom burden, and improve quality of life with reduced doses adjusted to minimize treatment-related toxicity (Nettina, 2019; Yarbro et al., 2018).


A wide range of chemotherapeutic agents are used in pancreatic cancer, usually given in combinations of two or three drugs. The drug selection depends on the cancer stage, the treatment intent (curative or palliative), prior lines of therapy, and the patient's clinical status (NCCN, 2023b). Table 6 provides a list of the preferred regimens. Some of the most common chemotherapy agents used for pancreatic cancer include the following:


  • 5-fluorouracil (5-FU)
  • calcium Leucovorin (Folinic Acid)
  • capecitabine (Xeloda)
  • irinotecan (Camptosar)
  • oxaliplatin (Eloxatin)
  • gemcitabine (Gemzar)
  • cisplatin (Platinol)
  • albumin-bound paclitaxel (Abraxane; NCCN, 2023b)

Table 6

Pancreatic Cancer Regimens

Regimen Name

Drugs Included 


  • calcium Leucovorin (Folinic Acid) IV
  • irinotecan (Camptosar) IV
  • oxaliplatin (Eloxatin) IV



  • oxaliplatin (Eloxatin) IV
  • 5-fluorouracil (5-FU) IV
  • calcium Leucovorin (Folinic Acid) IV



  • 5-fluorouracil (5-FU) IV
  • calcium Leucovorin (Folinic Acid) IV
  • irinotecan (Camptosar) IV
  • oxaliplatin (Eloxatin) IV



  • irinotecan (Camptosar) IV
  • oxaliplatin (Eloxatin) IV
  • 5-fluorouracil (5-FU) IV
  • calcium Leucovorin (Folinic Acid) IV


  • capecitabine (Xeloda) PO

Concurrent Chemoradiation


  • EBRT with concurrent capecitabine (Xeloda) or
  • EBRT with continuous infusion of 5-fluorouracil (5-FU) with calcium leucovorin (Folinic Acid) IV


  • gemcitabine (Gemzar)
  • cisplatin (Platinol)


  • gemcitabine (Gemzar)
  • albumin-bound paclitaxel (Abraxane)


(Mamon, 2023a; NCCN, 2023b; Olsen et al., 2019)


Chemotherapy Side Effects

The side effects of chemotherapy vary based on the drug type, dosage, duration of treatment, and specific patient factors. As a group, the most common side effects include lowering of the blood counts (anemia, thrombocytopenia, neutropenia), fatigue, nausea, anorexia, alopecia (hair loss), mucositis (mouth sores), diarrhea, skin changes, and peripheral neuropathy (damage to the sensory nerves). Table 7 reviews some of each agent's unique side effects and key considerations (Olsen et al., 2019; Yarbro et al., 2018).


Table 7

Pancreatic Cancer Chemotherapy Agents and Clinical Considerations



Clinical Considerations

5-Fluorouracil (5-FU)



  • calcium leucovorin (Folinic Acid) is a B-vitamin and is not a chemotherapy agent; administered alongside 5-fluorouracil (5-FU) as it helps the fluorouracil molecules bind to enzymes inside the cancer cells, augmenting cytotoxic effects
  • confers risk for palmar-plantar erythrodysesthesia (PPE; hand-foot syndrome)
    • small amounts of the chemotherapy leak out of the capillaries of the palms of the hands and soles of the feet
    • exposure of the hands and feet to heat, as well as friction on the palms and soles, increases the amount of drug in the capillaries and increases the amount of drug leakage
    • can manifest in symptoms such as redness, tenderness, swelling, blistering, and peeling of the palms and soles
    • educate patients to stay well hydrated, apply emollient moisturizers to palms and soles several times per day, reduce friction (repetitive movements such as clapping or running), and limit heat exposure to palms and soles
    • taking Vitamin B6 (pyridoxine) 100 mg twice daily is beneficial in preventing and treating PPE

Capecitabine (Xeloda)

  • an oral prodrug of 5-fluorouracil (5-FU) that is enzymatically metabolized into the active form of 5-fluorouracil (5-FU) in the tumor
  • commonly used in concurrent chemoradiation
  • carries a risk for PPE

Oxaliplatin (Eloxatin)

  • carries a risk for neurotoxicity, particularly chemotherapy-induced peripheral neuropathy (CIPN; see next section)
  • may also cause an unusual side effect of cold-induced dysesthesia (hypersensitivity to cold exposure)
    • symptoms may include spasms or tightness in the throat or jaw, difficulty swallowing, abnormal sensation in the tongue, chest pressure, or sensation of not being able to catch a breath
  • counsel patients on avoiding cold exposure, strategies to reduce risk such as wearing gloves and scarfs, and consuming all liquids and foods at room temperature

Irinotecan (Camptosar)

  • earned the nickname "I ran to the can" due to the high risk for severe and life-threatening diarrhea
  • counsel patients on monitoring for diarrhea, appropriate dietary modifications, and loperamide (Imodium) use

Gemcitabine (Gemzar)

  • can cause significant myelosuppression (see next section)
  • administer over 30 minutes; infusions longer than 60 minutes can increase pulmonary toxicity (i.e., interstitial pneumonitis, pulmonary fibrosis, pulmonary edema, bronchospasm)
  • counsel patients on the common side effects of flu-like symptoms (muscle pain, fever, headache, chills, fatigue) and fever (within 6-12 hours of the first dose), which is typically effectively managed with over-the-counter [OTC] analgesics (e.g., acetaminophen [Tylenol]), warm blankets, and oral hydration

Cisplatin (Platinol)

  • moderate-to-highly emetogenic (nausea-causing) agent that induces acute and delayed chemotherapy-induced nausea and vomiting (CINV)
  • poorly controlled CINV is associated with unfavorable treatment compliance and impaired survival
  • aprepitant (Emend) approved to reduce CINV associated with cisplatin (Platinol) is a neurokinin-1 (NK-1) receptor antagonist that blocks substance P/neurokinin 1 in the brain to control cisplatin (Platinol)-induced CINV;
    • used in combination with 5-hydroxytryptamine type 3 (5HT3) receptor antagonist (e.g., ondansetron [Zofran] or palonosetron [Aloxi]) and corticosteroids (e.g., dexamethasone [Decadron])
  • confers a risk for nephrotoxicity and requires aggressive hydration before and after the infusion to protect the renal system
  • carries a risk for neurotoxicity (e.g., CIPN and ototoxicity), which can be temporary or irreversible and permanent


(Olsen et al., 2019; Yarbro et al., 2018)



Bone Marrow Suppression. Bone marrow suppression refers to three main hematopoietic consequences of chemotherapy: neutropenia (reduction in white blood cells), anemia (reduction in red blood cells), and thrombocytopenia (reduction in platelets; Nettina, 2019; Olsen et al., 2019).


Neutropenia. When the body's natural defense, the immune system, is suppressed due to chemotherapy, the patient is considered neutropenic; the ability to mount an immune response to everyday germs, bacteria, or pathogens is poor. As a result, the patient is highly susceptible to illness and is at heightened risk for life-threatening bloodstream infections (bacteremia or sepsis). Neutropenia is defined by an absolute neutrophil count (ANC) of 1,500/mm3 or less and is the primary dose-limiting toxicity of chemotherapy. The most common sign of infection in a neutropenic patient is a fever. Febrile neutropenia is a medical emergency requiring prompt evaluation, workup, and the initiation of empiric antibiotics. Nurses must counsel patients on strategies to avoid infection, such as thorough handwashing, hygiene, and avoiding others who are ill. Patients should also avoid eating raw meats, seafood, eggs, or unwashed vegetables when neutropenic due to the risk of acquiring foodborne illnesses. Colony-stimulating factors such as filgrastim (Neupogen) or pegfilgrastim (Neulasta) may be prescribed to prevent or treat neutropenia. These injectable agents stimulate the bone marrow to rapidly produce white blood cells, reducing the risk of infection and neutropenic fever. The most common side effects include bone pain, particularly in the long bones, such as the hips and sternum, where bone marrow is produced (Nettina, 2019; Olsen et al., 2019).


Anemia. Anemia is a common consequence of chemotherapy and generally becomes more significant with each successive dose due to a cumulative effect as patients progress through treatment. In addition to low hemoglobin and hematocrit, as seen through bloodwork, patients may display pallor, fatigue, low energy, chest pain, shortness of breath, and weakness. Some patients may benefit from oral iron supplementation, folic acid, and an iron-rich diet. Others may require erythropoietin-stimulating agents such as epoetin alfa (Procrit, Epogen) or darbepoetin alfa (Aranesp) or blood transfusions (Nettina, 2019; Olsen et al., 2019).


Thrombocytopenia. Thrombocytopenia is a consequence of chemotherapy that heightens the risk of bleeding. Platelets impede bleeding by clumping and forming plaques in blood vessel injuries, such as cuts, lacerations, and other wounds. The risk of bleeding is present when a patient's platelet count falls below 50,000/mm3, high risk if their count falls below 20,000/mm3, and critical risk if their count falls below 10,000/mm3. Patients may require a platelet transfusion if their count drops below 20,000/mm3. This is particularly dangerous in patients on anticoagulation therapy, as their risk of bleeding is already increased. Signs of thrombocytopenia may include bruising, petechiae, epistaxis, gum bleeding, hematuria, or rectal bleeding. Nurses must counsel patients on strategies to prevent injury, such as avoiding shaving with razors, rectal suppositories, dental floss, or participating in activities that place them at risk for injury (i.e., contact sports, skiing, horseback riding; Nettina, 2019; Olsen et al., 2019). 


CIPN. CIPN is a common side effect of many types of chemotherapy used to treat pancreatic cancer, such as cisplatin (Platinol), albumin-bound paclitaxel (Abraxane), and oxaliplatin (Eloxatin). CIPN results from the demyelination of sensory and motor axons. Patients experience reduced nerve conduction velocity, leading to the loss of deep tendon reflexes and paresthesia (numbness and tingling), weakness, and burning pain. Initially, CIPN often affects the body's most distal points, such as the fingertips and toes, progressing proximally toward the midline. In severe cases, patients may lose all sensation in the fingers, hands, toes, and feet; this can cause significant disability, such as the inability to grasp or hold items, and gait disturbance, including imbalance and falls. CIPN is a complex topic since no single pathophysiologic process explains the neuropathies following chemotherapy exposure. CIPN is dose-dependent and progressive while a patient is receiving treatment. Pain, sensory changes, and weakness that manifest during treatment generally lead to chemotherapy dose reductions, changes in treatment protocols, or entirely termination of the therapeutic agent. CIPN can also have a cascading effect after treatment ends, whereby symptoms become more prominent after discontinuing the offending agent. CIPN is challenging to manage as it does not respond well to conventional treatments. OTC analgesics, menthol creams, capsaicin creams, or lidocaine patches may offer comfort, but most are ineffective. Gabapentin (Neurontin), an anticonvulsant/anti-epileptic agent, has demonstrated limited efficacy but may cause intolerable side effects of weight gain, depression, sedation, and heightened suicide risk. Some patients may find relief from selective serotonin-norepinephrine reuptake inhibitors (SNRIs) such as duloxetine (Cymbalta). Nurses must counsel patients on strategies to avoid injury (e.g., wearing supportive shoes) and promote home safety (e.g., using handrails on stairs and removing throw rugs). Patients must be mindful of water temperatures due to decreased sensitivity to hot water, increasing their risk for burns when bathing or washing dishes. Improvement in function and resolution of symptoms often occurs gradually over time, but nerve damage may be permanent (Brown et al., 2019; Olsen et al., 2019).


Targeted Therapy 

Poly ADP-Ribose Polymerase (PARP) Inhibitors

The PARP enzyme serves a critical role in cell growth, cell regulation, and the repair of healthy cells and cancer cells. It fixes DNA damage in cancer cells, helping them repair themselves and survive. PARP inhibitors interfere with the PARP enzyme, preventing cancer cells with a BRCA1/2 mutation from repairing DNA damage and inducing cell death. PARP inhibitors have transformed the treatment of BRCA-mutant cancers. On December 27, 2019, the US Food & Drug Administration (FDA) approved olaparib (Lynparza) for maintenance treatment in patients with germline BRCA1/2 mutations following platinum-based chemotherapy (i.e., cisplatin [Platinol] or oxaliplatin [Eloxatin]). Currently, Olaparib (Lynparza) is the only PARP inhibitor approved for use in pancreatic cancer; however, rucaparib (Rubraca) and niraparib (Zejula) are under clinical investigation, both demonstrating safety and effectiveness in Phase II trials. Olaparib (Lynparza) is administered at 300 mg PO twice daily. The most common side effects include anemia, neutropenia, fatigue, nausea, diarrhea or constipation, anorexia, and arthralgias. They are also associated with a rare risk (under 1.5%) of myelodysplastic syndrome (MDS, a bone marrow failure disorder) or acute myeloid leukemia (AML, a type of blood cancer). They carry a slight risk (under 1%) of pneumonitis and embryo-fetal toxicity. PARP inhibitors have several significant drug interactions, particularly antifungal medications and certain antibiotics. Patients should avoid grapefruit and Seville oranges, as they can increase PARP inhibitors' effects and toxicity (FDA, 2019; NCCN, 2023b; Olsen et al., 2019).



Pembrolizumab (Keytruda)

Immunotherapy is a novel cancer treatment group that stimulates the immune system to recognize and destroy cancer cells. Immunotherapy aims to produce anti-tumor effects by modifying the actions of the body's natural host defense mechanisms to become more sensitive to cancer cells. Immune-based treatments work differently than chemotherapy as they are highly specialized in their activity. Immunotherapy's role in treating pancreatic cancer is less advanced than in other diseases, and clinical research is ongoing. Pembrolizumab (Keytruda) is an immune-based agent currently approved for use in pancreatic cancers. It is FDA-approved for metastatic pancreatic tumors that are MSI-H or dMMR. Pembrolizumab (Keytruda) is a humanized monoclonal antibody that binds with high affinity to the programmed cell death-1 (PD-1)/PD-ligand 1 (PD-L1). PD-1 is a transmembrane checkpoint protein expressed on the surface of circulating immune cells. PD-1 normally acts as an "off switch" to keep the immune cells from attacking other cells in the body. When PD-1 binds to PD-L1, it signals the T-cell to leave the neighboring cells alone. Some cancer cells have large amounts of PD-L1, which helps them evade immune attacks. PD-1 and PD-L1 inhibitors have been designed to prevent the formation of this complex and enable immune cells to continue attacking tumor cells. Drugs targeting PD-1 or PD-L1 are designed to block this binding and boost the immune response against cancer cells. In clinical trials, pembrolizumab (Keytruda) demonstrated promising and durable anti-tumor activity in patients with PD-L1-positive pancreatic cancer, offering a clinically meaningful and viable treatment strategy (Mehnert et al., 2020; Miliotou & Papadopoulou, 2018; NCCN, 2023b).


While pembrolizumab (Keytruda) is typically well-tolerated, all immunotherapy drugs carry boxed warnings for immune-mediated adverse reactions (irAEs), which can be fatal if left untreated. An autoimmune response can impact any organ system, inducing nonspecific inflammation throughout the body. The most common immune-mediated complications include enterocolitis, hepatitis, endocrinopathies (inflammation of the thyroid and adrenal glands), nephritis, and uveitis. Care of the patient receiving immunotherapy requires cautious triage and meticulous assessment to identify signs of potential irAEs. Most irAEs are reversible but require timely intervention with immunosuppressive treatment, typically in the form of corticosteroids. Patient education regarding the importance of self-assessment and immediately reporting symptoms is vital. With pneumonitis, symptoms can range from mild cough and dyspnea to severe shortness of breath and life-threatening hypoxia. GI effects can range from mild diarrhea and abdominal cramping to severe colitis, which can be fatal if not managed. Skin toxicity may present initially as mild pruritus or dermatitis and can progress to Stevens-Johnson syndrome (SJS). SJS is characterized by a painful systemic red rash that leads to blistering and sloughing of the skin's top layer. Life-threatening endocrinopathies can cause varied symptoms, such as extreme weakness, excessive fatigue or lethargy, electrolyte disturbances, thyroid inflammation, and pituitary dysfunction (NCCN, 2023b; Olsen et al., 2019; Sasikumar & Ramachandra, 2018).


Dostarlimab (Jemperli) is a PD-1-blocking monoclonal antibody that is FDA-approved to treat patients with advanced pancreatic cancer with dMMR. The most common side effects of dostarlimab (Jemperli) include anemia, diarrhea, nausea, and fatigue. Regular laboratory monitoring of liver enzymes, thyroid function, and creatinine levels is required due to the risk of severe immune-mediated adverse reactions (Cancer Therapy Advisor, 2023; O'Hara, n.d.).


Anti-tumor Therapy for Functioning PNETs

Aside from surgical excision and chemotherapy, directed treatment strategies are recommended to control the unique hormonal effects of PNETs. The NCCN (2023b) recommends managing gastric hypersecretion caused by gastrinoma tumors with anti-secretory medications, such as proton pump inhibitors (PPIs; omeprazole [Prilosec], pantoprazole [Protonix], and lansoprazole [Prevacid]). These medications effectively suppress acid secretion, reducing gastric distress, burning, and diarrhea. Somatostatin analogs such as octreotide (Sandostatin) and lanreotide (Somatuline Depot) are synthetic versions of somatostatin that suppress and decelerate hormone production. These injectable agents are primarily administered to palliate symptoms. However, clinical trials have demonstrated the anti-tumor effects of octreotide (Sandostatin) and lanreotide (Somatuline Depot) in advanced PNETs, suggesting they also help control the disease. The most common adverse reactions include abdominal pain, musculoskeletal pain, muscle spasms, nausea, vomiting, headache, injection site reactions, hyperglycemia, hypertension, and cholelithiasis (Chan et al., 2022; FDA, 2023; NCCN, 2023b; Pavel et al., 2017).


Everolimus (Afinitor) is a relatively novel oral agent that inhibits the mammalian target of the rapamycin (mTOR) pathway. The mTOR pathway is a component of a complex intracellular signaling mechanism that serves as a critical regulator of cell physiology in various cancers. Linked to multiple cellular and physiological functions involved in cellular growth, proliferation, and survival, mTOR is used as a drug target in several types of cancers. Initially approved for use in advanced breast cancer, everolimus (Afinitor) has demonstrated efficacy in delaying disease progression of PNETs, controlling symptoms, and preserving the quality of life (Chan et al., 2022; NCCN, 2023b; Pavel et al., 2017). The most frequent side effect is oral mucositis, inflammation, irritation, swelling, and ulceration of the oral mucosa and lips. These symptoms can develop as early as two weeks after starting the medication. Nurses should educate patients on oral hygiene practices to preserve the oral mucosa's integrity, such as using soft-bristled toothbrushes and avoiding irritating alcohol-based mouthwashes. Additional reported side effects of everolimus (Afinitor) include fatigue, anorexia, skin rash, diarrhea, and increased serum cholesterol levels. It carries a risk for pneumonitis, impaired wound healing, renal failure, and embryo-fetal toxicity. Everolimus (Afinitor) is also associated with a risk for angioedema in patients taking concomitant angiotensin-converting enzyme (ACE) inhibitors (FDA, 2018).


For an enhanced understanding of chemotherapy, immunotherapy, and targeted cancer treatments, refer to the following NursingCE courses:


  • Oncology Prescribing for APRNs
  • Oncology Nursing Part 2: Chemotherapy and Oncologic Emergencies


Palliative Care and Pancreatic Cancer

While palliative care should be a standard component of all aspects of cancer care, it is of utmost importance for patients with pancreatic cancer, given the disease's dismal survival rates and high morbidity. The World Health Organization (WHO, 2020) defines 'palliative care' as,


"an approach that improves the quality of life of patients and their families facing the problem associated with life-threatening illness, through the prevention and relief of suffering by means of early identification and impeccable assessment and treatment of pain and other problems, physical, psychosocial and spiritual" (WHO, 2020).


Palliative care is an interdisciplinary medical subspecialty that focuses on alleviating the pain, stressors, and other symptoms associated with serious illness. While the term is widely utilized throughout healthcare settings, it is often misunderstood. Many confuse palliative care with end-of-life (EOL) and hospice care. The need for palliative care is heightened at the EOL due to increased symptom burden; however, it is appropriate at any point during a chronic illness. Unlike hospice care, palliative care can and should be implemented simultaneously while treating the disease and ideally should be employed throughout the illness trajectory. Palliative care does not intend to hasten or postpone death but offers a support system to help patients live as actively as possible until death. It is based on the patient's need, not prognosis, and the primary goal is to promote comfort and ease suffering (Kelley & Bollens-Lund, 2018; WHO, 2020; Yarbro et al., 2018).


The Nurse's Role in Palliative Care 

             Goals of care discussions and advanced care planning (ACP) are essential components of palliative care at all stages of illness but become increasingly dire as the patient's health status declines. When patients are adequately informed about their diagnosis and prognosis, their choices regarding CPR and additional life-sustaining measures at the EOL are more realistic. Despite popular misconceptions, EOL discussions do not cause emotional harm to patients and their families. When EOL care is discussed, bereaved families report higher satisfaction with the care team's communication and increased comfort of their loved ones. Patients who have EOL discussions with their care team are more likely to accept their diagnosis as terminal, have an advance directive, and opt for medical treatment(s) focused on relieving pain rather than extending their lives with futile interventions. They are less likely to receive mechanical ventilation, have a feeding tube, undergo resuscitation, or be admitted to an intensive care unit. They are more likely to choose hospice care, which is consistently linked to improved quality of life at the EOL, enhanced symptom control, increased emotional support, and more comfort through the dying process. Hospice is also associated with decreased major depression in bereaved caregivers. Caregivers of patients who received aggressive care in the last weeks of life are more likely to develop a major depressive disorder, experience regret, feel unprepared for the patient's death, and report poorer quality of life (Hawley, 2017; Hughes et al., 2019).


Nurses practice at the forefront of primary care across clinical settings. They are well-positioned to serve critical roles as palliative care team members and facilitate these open, honest conversations with patients and families. They are responsible for addressing psychological responses, emotions, or changes in cognition as prognosis and care goals evolve during the illness's trajectory. Nurses advocate for the patient's dignity and self-esteem by providing palliative care interventions to promote comfort and reduce suffering. They serve fundamental roles in ensuring symptoms are managed throughout the cancer continuum, connecting patients to necessary resources, and implementing measures to preserve the quality of life. Nurses bridge communication between team and family members, so they must acquire practical communication skills to navigate these conversations. Nurses are critical in educating patients and families about these vital decisions, explaining options, and ensuring decisions are aligned with the patient's goals of care (Kellas et al., 2017; Nettina, 2019; Yarbro et al., 2018).



For additional information regarding palliative care and care at the EOL, refer to the following NursingCE courses:


  • End-of-Life Care (with Ethical Issues)
  • Palliative Care for APRNs 
  • Pain Management for APRNs (3-part series)



American Board of Internal Medicine. (2023). ABIM laboratory test reference ranges - July 2023. https://www.abim.org/~/media/ABIM%20Public/Files/pdf/exam/laboratory-reference-ranges.pdf

American Cancer Society. (2019). Signs and symptoms of pancreatic cancer. https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/signs-and-symptoms.html

American Cancer Society. (2020a). Pancreatic cancer risk factors. https://www.cancer.org/cancer/pancreatic-cancer/causes-risks-prevention/risk-factors.html

American Cancer Society. (2020b). Radiation therapy side effects. https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/radiation/effects-on-different-parts-of-body.html

American Cancer Society. (2023a). Key statistics for pancreatic cancer. https://www.cancer.org/cancer/pancreatic-cancer/about/key-statistics.html

American Cancer Society. (2023b). Survival rates for pancreatic cancer. https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html

American Society of Clinical Oncology. (2021). Lynch syndrome. https://www.cancer.net/cancer-types/lynch-syndrome

American Society of Clinical Oncology. (2022). Pancreatic cancer: Risk factors. https://www.cancer.net/cancer-types/pancreatic-cancer/risk-factors

Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., Meyer, L., Gress, D. M., Byrd, D. R., & Winchester, D. P. (2017). The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA: A Cancer Journal for Clinicians, 67(2), 93-99. https://doi.org/10.3322/caac.21388

Brown, T. J., Sedhom, R., & Gupta, A. (2019). Chemotherapy-induced peripheral neuropathy. JAMA Oncology, 5(5),750. https://doi.org/10.1001/jamaoncol.2018.6771

Burkon, P., Trna, J., Slavik, M., Nemecek, R., Kazda, T., Pospisil, P., Sastych, M., Eid, M., Novotny, I., Prochazka, T., & Vrzal, M. (2022). Stereotactic body radiotherapy (SBRT) of pancreatic cancer: A critical review and practical consideration. Biomedicines, 10(10), 2480. https://doi.org/10.3390/biomedicines10102480

Buscail, L., Bournet, B., & Cordelier, P. (2020). Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nature Reviews Gastroenterology & Hepatology, 17, 153-168. https://doi.org/10.1038/s41575-019-0245-4

Bujanda, L., & Herreros-Villanueva, M. (2017). Pancreatic cancer in Lynch syndrome patients. Journal of Cancer, 8(18), 3667-3674. http://doi.org/10.7150/jca.20750

CancerQuest. (n.d.). Cancer genes. Emory Winship Cancer Institute. Retrieved October 6, 2023, from https://www.cancerquest.org/cancer-biology/cancer-genes

Cancer Therapy Advisor. (2023). Endometrial cancer: Pharmacologic management. https://www.cancertherapyadvisor.com/ddi/endometrial-cancer-pharmacologic-management/#Hormone_Therapy

Canto, M. I. (2023). Familial risk factors for pancreatic cancer and screening of high-risk patients. UpToDate. Retrieved October 6, 2023, from https://www.uptodate.com/contents/familial-risk-factors-for-pancreatic-cancer-and-screening-of-high-risk-patients

Centers for Disease Control and Prevention. (2023a). Genetic testing for Lynch syndrome. https://www.cdc.gov/genomics/disease/colorectal_cancer/testing_lynch.htm

Centers for Disease Control and Prevention. (2023b). Hereditary breast cancer and BRCA genes. https://www.cdc.gov/cancer/breast/young_women/bringyourbrave/hereditary_breast_cancer/index.htm

Chan, J. A., Kulke, M., & Clancy, T. E. (2022). Metastatic well-differentiated pancreatic neuroendocrine tumors: Systemic therapy options to control tumor growth and symptoms of hormone hypersecretion. UpToDate. Retrieved October 6, 2023, from https://www.uptodate.com/contents/familial-risk-factors-for-pancreatic-cancer-and-screening-of-high-risk-patients

Dragovich, T. (2022a). Pancreatic cancer guidelines. https://emedicine.medscape.com/article/280605-guidelines

Dragovich, T. (2022b). Pancreatic cancer overview. https://emedicine.medscape.com/article/280605-overview#a4

Dragovich, T. (2022c). Pancreatic cancer treatment and management. https://emedicine.medscape.com/article/280605-treatment

Dragovich, T. (2022d). Pancreatic cancer workup. https://emedicine.medscape.com/article/280605-workup#c18

Fernandez-del Castillo, C. (2023). Clinical manifestations, diagnosis, and staging of exocrine pancreatic cancer. UpToDate. Retrieved October 11, 2023, from https://www.uptodate.com/contents/clinical-manifestations-diagnosis-and-staging-of-exocrine-pancreatic-cancer

Fernandez-del Castillo, C., & Jimenez, R. E. (2022). Overview of surgery in the treatment of exocrine pancreatic cancer and prognosis. UpToDate. Retrieved October 14, 2023, from https://www.uptodate.com/contents/overview-of-surgery-in-the-treatment-of-exocrine-pancreatic-cancer-and-prognosis

Fernandez-del Castillo, C., & Jimenez, R. E. (2023). Epidemiology and nonfamilial risk factors for exocrine pancreatic cancer. UpToDate. Retrieved October 6, 2023, from https://www.uptodate.com/contents/epidemiology-and-nonfamilial-risk-factors-for-exocrine-pancreatic-cancer

Genetic and Rare Diseases. (2023). Familial atypical multiple mole melanoma syndrome. https://rarediseases.info.nih.gov/diseases/9281/fammm-syndrome#ref_13155

Goggins, M., Overbeek, K. A., Brand, R., Syngal, S., Del Chiaro, M., Bartsch, D. K., Bassi, C., Carrato, A., Farrell, J., Fishman, E. K., Fockens, P., Gress, T. M., van Hooft, J., Hruban, R. H., Kastrinos, F., Klein, A., Lennon, A. M., Lucas, A., Park, W., …& International Cancer of the Pancreas Screening (CAPS) Consortium. (2020). Management of patients with increased risk for familial pancreatic cancer: Updated recommendations for the International cancer of the pancreas screening (CAPS) Consortium. Gut, 69(2), 7-17. https://doi.org/10.1136/gutjnl-2019-319352

Hawley, P. (2017). Barriers to access to palliative care. Palliative Care, 10, 1-6. https://doi.org/10.1177/1178224216688887

Hinkle, J. L., Cheever, K. H., & Overbaugh, K. (2021). Textbook of medical-surgical nursing (15th ed.). Wolters Kluwer.

Hughes, N. M., Noyes, J., Eckley, L., & Pritchard, T. (2019). What do patients and family/caregivers value from hospice care? A systematic mixed studies review. BMC Palliative Care, 18(18), 1-13. https://doi.org/10.1186/s12904-019-0401-1

Kellas, J. K., Castle, K. M., Johnson, A., & Cohen, M. Z. (2017). Communicatively constructing the bright and dark sides of hope: Family caregivers' experiences during end of life cancer care. Behavioral Science (Basel), 7(2), 33-45. https://doi.org/10.3390/bs7020033

Kelley, A. S., & Bollens-Lund, E. (2018). Identifying the population with serious illness: The "denominator" challenge. Journal of Palliative Medicine, 21(S2), S7-S16. https://doi.org/10.1089/jpm.2017.0548

Lumen Learning. (n.d.). The pancreas: Overview of pancreatic islets. Retrieved October 12, 2023, from https://courses.lumenlearning.com/boundless-ap/chapter/the-pancreas

Mahon, S. (2020). Germline and somatic mutations: What is the difference? https://voice.ons.org/news-and-views/germline-and-somatic-mutations-what-is-the-difference

Mamon, H. (2023a). Initial chemotherapy and radiation for nonmetastatic, locally advanced, unresectable, and borderline resectable exocrine pancreatic cancer. UpToDate. Retrieved October 14, 2023, from https://www.uptodate.com/contents/initial-chemotherapy-and-radiation-for-nonmetastatic-locally-advanced-unresectable-and-borderline-resectable-exocrine-pancreatic-cancer

Mamon, H. (2023b). Treatment for potentially resectable exocrine pancreatic cancer. UpToDate. Retrieved October 14, 2023, from https://www.uptodate.com/contents/treatment-for-potentially-resectable-exocrine-pancreatic-cancer

McCance, K. L., & Heuther, S. E. (2019). Pathophysiology: The biologic basis for disease in adults and children. (8th ed.). Elsevier.

MedlinePlus. (2012). Hereditary pancreatitis. National Library of Medicine. https://medlineplus.gov/genetics/condition/hereditary-pancreatitis/#synonyms

MedlinePlus. (2013). Familial adenomatous polyposis. National Library of Medicine. https://medlineplus.gov/genetics/condition/familial-adenomatous-polyposis

MedlinePlus. (2015). STK11 gene. National Library of Medicine. https://medlineplus.gov/genetics/gene/stk11

MedlinePlus. (2018). CDKN2A gene: Cyclin-dependent kinase inhibitor 2A. National Library of Medicine. https://medlineplus.gov/genetics/gene/cdkn2a

MedlinePlus. (2020). TP53 gene: Tumor protein p53. National Library of Medicine. https://medlineplus.gov/genetics/gene/tp53/#conditions

MedlinePlus. (2021a). Lynch syndrome. National Library of Medicine. https://medlineplus.gov/genetics/condition/lynch-syndrome

Medline Plus. (2021b). What are the different ways a genetic condition can be inherited? National Library of Medicine. https://medlineplus.gov/genetics/understanding/inheritance/inheritancepatterns

Mehnert, J. M., Bergsland, E., O’Neil, B. H., Santoro, A., Schellens, J. H. M., Cohen, R. B., Boi, T., Ott, P. A., Pishvaian, M. J., Puzanov, I., Aung, K. L., Hsu, C., Le Tourneau, C., Hollebecque, A., Elez, E., Tamura, K., Gould, M., Yang, P., Stein, K., & Piha-Paul, S. A. (2020). Pembrolizumab for the treatment of programmed death-ligand 1-positive advanced carcinoid or pancreatic neuroendocrine tumors: Results from the KEYNOTE-028 study. Cancer, 126(13), 3021-3030. https://doi.org/10.1002/cncr.32883

Miliotou, A. N., & Papadopoulou, L. C. (2018). CAR T-cell therapy: A new era in cancer immunotherapy. Current Pharmaceutical Biotechnology, 19(1), 5-18. https://doi.org/10.2174/1389201019666180418095526

Mirrielees, J. A., Weber, S. M., Abbott, D. E., Greenberg, C. C., Minter, R. M., & Scarborough, J. E. (2020). Pancreatic fistula and delayed gastric emptying are the highest-impact complications after Whipple. Journal of Surgical Research, 250, 80-87. https://doi.org/10.1016/j.jss.2019.12.041

National Cancer Institute. (2022). Pancreatic neuroendocrine tumors (islet cell tumors) treatment (PDQ®)-Health professional version. https://www.cancer.gov/types/pancreatic/hp/pnet-treatment-pdq

National Comprehensive Cancer Network. (2023a). NCCN clinical practice guidelines in oncology (NCCN guidelines®): Genetic/familial high-risk assessment: Breast, ovarian, and pancreatic, version 2.2024. https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf

National Comprehensive Cancer Network. (2023b). NCCN clinical practice guidelines in oncology (NCCN guidelines®): Pancreatic adenocarcinoma, version 2.2023. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf

Nettina, S. M. (2019). Lippincott manual of nursing practice (11th ed.). Wolters Kluwer.

Nguyen, M. (2022). Pancreatic cancer. Merck Manual Professional Version. https://www.merckmanuals.com/professional/gastrointestinal-disorders/tumors-of-the-gastrointestinal-tract/pancreatic-cancer

O'Hara, M. (n.d.). How is immunotherapy for pancreatic cancer changing the outlook for patients? Cancer Research Institute. Retrieved October 13, 2023, from https://www.cancerresearch.org/cancer-types/pancreatic-cancer

Olsen, M., LeFebvre, K., & Brassil, K. (2019). Chemotherapy and immunotherapy guidelines and recommendations for practice (1st ed.). Oncology Nursing Society.

Pancreatic Cancer Action Network. (n.d.). Endoscopic retrograde cholangiopancreatography (ERCP). Retrieved October 11, 2023, from https://www.pancan.org/facing-pancreatic-cancer/diagnosis/endoscopic-retrograde-cholangiopancreatography-ercp

Pancreatic Cancer Action Network. (2022). Genetics: Risk factor of pancreatic cancer. https://pancreaticcanceraction.org/about-pancreatic-cancer/risk-factors-of-pancreatic-cancer/genetics-risk-factor-of-pancreatic-cancer

Pavel, M. E., Baudin, E., Oberg, K. E., Hainsworth, J. D., Voi, M., Rouyrre, N., Peeters, M., Gross, D. J., & Yao, J. C. (2017). Efficacy of everolimus plus octreotide LAR in patients with advanced neuroendocrine tumor and carcinoid syndrome: Final overall survival from the randomized, placebo-controlled phase 3 RADIANT-2 study. Annals Oncology, 28(7), 1569-1575. https://doi.org/10.1093/annonc/mdx193

Pilarski, R. (2019). The role of BRCA testing in hereditary pancreatic and prostate cancer families. American Society of Clinical Oncology Educational Book, 39, 79-86. https://doi.org/10.1200/EDBK_238977

Puckett, Y., & Garfield, K. (2022). Pancreatic cancer. StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK518996

RadiologyInfo.org. (2022a). General ultrasound. https://www.radiologyinfo.org/en/info.cfm?pg=genus

RadiologyInfo.org. (2022b). Pancreatic cancer. https://www.radiologyinfo.org/en/info.cfm?pg=pancreatic-cancer

Sasikumar, P. G. & Ramachandra, M. (2018). Small-molecule immune checkpoint inhibitors targeting PD-1/PDL1 and other emerging checkpoint pathways. BioDrugs, 35(5), 481-497. https://doi.org/10.1007/s40259-018-0303-4

Schwarzenberg, S. J. (2023). Pancreatitis associated with genetic risk factors. UpToDate. Retrieved October 6, 2023, from https://www.uptodate.com/contents/pancreatitis-associated-with-genetic-risk-factors

Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 167-48. https://doi.org/10.3322/caac.21763

Strosberg, J. R. (2023). Classification, epidemiology, clinical presentation, localization, and staging of pancreatic neuroendocrine neoplasms. UpToDate. Retrieved October 6, 2023, from https://www.uptodate.com/contents/classification-epidemiology-clinical-presentation-localization-and-staging-of-pancreatic-neuroendocrine-neoplasms

Sun, N., Lu, G., Zhang, l., Wang, X., Gao, C., Bi, J., & Wang, X. (2017). Clinical efficacy of spleen-preserving distal pancreatectomy with or without splenic vessel preservation: A meta-analysis. Medicine, 96(48), e8600. http://doi.org/10.1097/MD.0000000000008600

Suriawinata, A. (2023). Pathology of exocrine pancreatic neoplasms. UpToDate. Retrieved October 6, 2023, from https://www.uptodate.com/contents/pathology-of-exocrine-pancreatic-neoplasms

Surveillance, Epidemiology, and End Results Program. (2023). Cancer stat facts: Pancreatic cancer. https://seer.cancer.gov/statfacts/html/pancreas.html

Tsai, S., George, B., Wittman, D., Ritch, P. S., Krepline, A. N., Aldakkak, M., Barnes, C. A., Christians, K. K., Dua, K., Griffin, M., Hagen, C., Hall, W. A., Erickson, B. A., & Evans, D. B. (2020). Importance of normalization of CA19-9 levels following neoadjuvant therapy in patients with localized pancreatic cancer. Annals of Surgery, 271(4), 740-747. https://doi.org/10.1097/SLA.0000000000003049

To, B. A. T. (2018). Peutz-Jeghers syndrome overview. https://emedicine.medscape.com/article/182006-overview

US Food & Drug Administration. (2018). Highlights of prescribing information: Afinitor®(everolimus). https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022334s040,203985s013lbl.pdf

US Food & Drug Administration. (2019). FDA approves olaparib for gBRCAm metastatic pancreatic adenocarcinoma. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-olaparib-gbrcam-metastatic-pancreatic-adenocarcinoma

US Food & Drug Administration. (2023). Highlights of prescribing information: Somatuline® depot (lanreotide) injection. https://www.ipsen.com/websites/Ipsen_Online/wp-content/uploads/2019/08/30162316/Somatuline_Depot_Full_Prescribing_Information_7.22.19.pdf

Waters, A. M., & Der, C. J. (2018). KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harbor Perspectives in Medicine, 8(9), 1-17. https://doi.org/10.1101/cshperspect.a031435

World Health Organization. (2020). Palliative care: Key facts. https://www.who.int/news-room/fact-sheets/detail/palliative-care

Yarbro, C. H., Wujcik, D., & Gobel, B. H. (2018). Cancer nursing: Principles and practice (8th ed.). Jones & Bartlett Learning.

Yaskin, J. C. (1931). Nervous symptoms as earliest manifestations of carcinoma of the pancreas. JAMA, 96(20), 1664-1668. https://doi.org/10.1001/jama.1931.02720460010003

Yousaf, M. N., Chaudhary, F. S., Ehsan, A., Suarez, A. L. Muniraj, T., Jamidar, P., Aslanian, H. R., & Farrell, J. J. (2020). Endoscopic ultrasound (EUS) and the management of pancreatic cancer. BMJ Open Gastroenterology, 7(1), e000408. https://doi.org/10.1136/bmjgast-2020-000408


Single Course Cost: $19.00

Add to Cart